ﬁl‘ Journal of Global Optimizationl5: 73-83, 1999. 73
i\ © 1999Kluwer Academic Publishers. Printed in the Netherlands.

Computing a Minimum Weight Triangulation
of a Sparse Point Set

CAO AN WANG! and YIN-FENG XU

1pepartment of Computer Science, Memorial University of Newfoundland, St John's, NFLD,
Canada A1B 3X5?The School of Management, Xi’an Jiaotong University, Xi'an, People’s
Republic of China

(Received 25 June 1996; accepted in revised form 8 September 1998)

Abstract. Investigating the minimum weight triangulation of a point set with constraint is an impor-
tant approach for seeking the ultimate solution of the minimum weight triangulation problem. In this
paper, we consider the minimum weight triangulation aiparse point setand present a (n%)
algorithm to compute a triangulation of such a set. The property of sparse point set can be converted
into a new sufficient condition for finding subgraphs of the minimum weight triangulation. A special
point set is exhibited to show that our new subgraph of minimum weight triangulation cannot be
found by any currently known methods.
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1. Introduction

LetS={p; |i=0,...,n— 1} be asetof points in the plane, where each point
p; has the coordinates (p;), y(p;)). For simplicity, we assume thétis in general
position so that no three points fhare co-linear. Lep; p; for i # j denote the
line segment with endpoints; andp;, and letw (p; p;) denote the weight 6b; p;,
that is the Euclidean distance betwggrandp;.

A triangulation of a planar point se§, denoted byr'(S), is a maximum set of
line segments with endpoints kin which no two line segments share any interior
point of them, thus"(S) partitions the interior of the convex hull ¢finto empty
triangles. The weight of a triangulatidh(S) is given by

o(T(S) = > olpipy.
pipjeT(S)
A minimum weight triangulationsimply MW T, of S is defined as
MWT(S) = min{w(T(S)) | for all possibleT (S)}.

*This work was completed while the second author visited the Department of Computer
Science, Memorial University of Newfoundland.
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Computing anMWT (S) is an outstanding open problem whose complexity
status is unknown [10, 17]. A great deal of work has been done to seek the ultimate
solution of the problem. Basically, there are two directions from which to attack the
problem. The first one is to identify the edges inclusive or exclusived W T (S)

[5, 7,12, 21]. Itis obvious that the intersection of all triangulations of S is a subset
of MWT (S). Recently, Dickerson and Montague [7] observed that the intersection
of all local optimal triangulations of is a subgraph oM WT (S). A triangulation

T(S) is calledk-gon local optimal, denoted b, (S), if any k-gon attracted from
T(S) is optimally triangulated by the edges B{S). If the MWT(S) is unique,
then the following inclusion property holds:

(7@ S(Ta(S) S S () Th-a() S MWT(S).

However, it seems difficult to find the intersectionkdacreases, and so far only
a subgraph off4(S) has been found by [7]. Gilbert [9] showed that the shortest
edge inS is in MWT(S). Yang et al. [21] showed that mutual nearest neighbors
in S are also iNnMWT (S). Keil [12] showed that the so-callefl-skeleton ofS
for B = /2 is a subgraph oM WT (S). Cheng and Xu [5] extended Keil’s result
to B = 1.17682. It seems that the identification of more edge8iWwT (S) is a
promising approach. This is because the more the edgegd1ot (S) are identified,
the less disjoint connected componentsMiw T (S) will be. It is possible that
eventually all these identified edges form a connected graph so thdiian (S)
can be constructed by a dynamic programming method in polynomial time. More-
over, even if such a connected graph is impossible to obtain, a larger subgraph will
lead to a better performance by some heuristics [20].

The other direction is to construct exaefWT (S) with some constraint on
S. Gilbert [9] and Klinesek [13] investigated the case wh&ris restricted to a
simple polygon. AnO (n®) time dynamic programming algorithm was proposed
to obtain anM W T (S). Anagnostou and Corneil [1] studied the situation whgre
is restricted tak nested convex polygons. They gave @m3+1) time algorithm
to find anMWT (S). Meijer and Rappaport [15] later improved the time bound to
O (n*) whenS is restricted tok non-intersecting line segments inside the convex
hull of S. Cheng et al. [6] and Xu [18] showed that if a subgrapaV T (S) with
k connected components is known, then the comple® T (S) can be computed
in O (") time. In addition to the potential applications of constraint cases, it
is hoped that the research on constraint cases would reveal some insight to the
solution for the general case.

In this paper, we investigate the situation tidbrms a sparse set, which infor-
mally speaking, has a property that the distance between two consecutive convex
layers of the set is longer than the diameter of the inner layer. We presért:én
time algorithm for computing aM W T (S) for a sparse sef. Amazingly, unlike
the most known constraine®d WT algorithms which depend on the number of
disjoint connected components, the time complexity of our algorithm is indepen-
dent on the number of convex laygrsFurthermore, we can convert the property
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of sparse set to a new sufficient condition for finding subgraphs G &nT (S).
By demonstrating some special point set, we show that our new subgraphs cannot
be found by any currently known methods [5, 7, 9, 12, 18].

The paper is organized as follows. In Section 2, we discuss some properties of
a point set restricted to its convex layers. In Section 3, we present an algorithm
that produces aM W T (S) with convex layers constraint. In Section 4, we define
a sparse point set and propose a® (n*) algorithm to compute aM WT (S). In
Section 5, we make some concluding remarks. In particular, we describe a suffi-
cient condition for some edges to bedW T (S) and also demonstrate a point set
whose new subgraph @ WT cannot be found by any known method.

2. Notations and lemmas

The convex layers of a sétof points in the plane, denoted I6}Z.(S), is the set of
nested convex polygons obtained by repeatedly computing the convex hull of the
remaining set after removing the vertices of the current convex hull. Computing
the convex layers of a planar point set was discussed in many papers [3, 16]. An
optimal ® (n logn) time algorithm was given by Chazelle [3].

FACT 1. (3). Convex layer< L(S) for | S |= n can be found inO (nlogn) time
and O (n) space.

Let CL(S) = (Cq, Co, ..., Cy) be the convex layers of, whereC; for i =
1, ..., kistheith layer ofS. Let V(C;) be the vertex set of; and let| V(C;) |=
n;. Let R(C;) be the interior region bounded lay and letR; ;1 denote the region
betweenR (C;) andR(C;1).

LEMMA 1. LetCL(S) = (C4q,...,Cy) and letT¢;(S) be any triangulation with
CL(S) constraint. For each vertex of C;, there exists a vertex of C;_; such that
edgepqg belongs tol¢ (S).

Proof. Sincep is a vertex ofC; for 1 < i < k, p is an interior point ofR (C;_1).
Since the inner angle at the shared endppinf any two consecutive edges ©f
is less thant, there must exist an edge 7, (S) lying on R;_1; ande = pq for
qeV(Ci-1). O

Let MWTc,(S) denote the minimum weight triangulation 8fwith convex
layers constraint. Figure 1 shows MW T (S) and anMW T, (S) for a given
point sets.

3. The algorithm for computing an MW T¢, (S)

Let T¢-1(S) be any triangulation of with CL(S) € T¢.(S), and letw(T¢ (S))
be its weight. A minimum weight triangulation with convex layers constraint,
MWTc(S), is one which minimizeso (T¢;(S)) among all possible¢; (S). It
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Figure 1. The left-hand side i3/ W T, (S) and the right-hand side i@ WT (S).

1 p1
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p
1

Figure 2. For the definition ofp..

is obvious that to find aM W T (S) is easier than to find aM W T (S). This is
because the convex layard.(S) are already known to be a subsetddW T, (S),
a polynomial time algorithm for computing @dW T¢ (S) is possible.

FACT 2. (9,14,18).If L is a set of non-intersecting edges with endpointS such
that G(S, L) is a planar connected graph, then aW T of S with L constraint,
denoted by W T, (S), can be found ir0 (n®) time for| S |= n.

Xu [18] analyzed the optimal cell triangulation algorithm given by Heath and
Pemmarajiu [11] and obtained ai(»®) algorithm for computing ad W T (S),
whereL is a subset of non-intersecting edges with endpoinsandG (S, L) is a
planar connected graph. We denote this algorithrA asT .

Since MW T (S) only minimizes the total weight of edges between convex
layers, we first consider how to triangulate regi®n, so that the total weight of
edges inRy, is @ minimum. Letp? be the vertex inC, with the maximumy-
coordinate (for convenience, we can assume that no two poisthave the same
y-coordinate), and leN (p?) be the subset of vertices 6f whosey-coordinates
are greater than that @2, i.e., y(q) > y(p2?) for ¢ € N(p?). Figure 2 shows the
definition of p2 and N (p?), whereN (p?) = (pi, p3, P3» P7)- By Lemma 1, there
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exists at least one vertgxt € N(p?) such that edge?2pl is in an MW T (S).

In order to identify such an edge, we have to check all possible edges ending at
p2andN (p?) and their corresponding constrailtW 7's. Vertexp? can be easily
found in at mostO (n,) time by scanning the-coordinates of the vertices @,

N(pi) can be computed in at mosét(n,) time by scanning these vertices Gf

with y-coordinates greater thar{p?). For each verteye N (p?), add edgeyp? to
form a graphG (V (Cy) U V(C3), C1 U C2 U {gp2}). Clearly, the graplG is planar
and connected. By Fact 2, W T (V(C1) U V(Cy)) with L(= C1 U C, U {gp?})
constraint can be found i@ ((ny + n,)%) time by algorithmA — T,_. Then, an
MWT (V(Cy) U V(C») with C; U C, constraint can be found in at moék(|
N(p?) | (n1+np)°) time.

In the following, we describe an algorithm, denoteddy MW T¢ , to produce
anMWT of S with convex layers constraint.

Let CL(S) = (Cy, ..., Cy), and letp. denote the vertex of; with maximal
y-coordinate. Let Ng’) denote those vertices @;_; whose y-coordinates are
greater than that gf:.

ALGORITHM A - MWT¢,
Input: S (a set ofz points in general position).
Output:t MW Tep (S)
1. Find the convex layer§SL(S) = (Cq, ..., Cy).
2. Fori =210k Do
(@ Findp! andN(p').
(b) WhileN(pl) # ¢ Do
(i) g < attract(N(pl));
(i) Compute aMWT. . o (V(C)UVI(Ci) byA —Ty;
(i) Update the minimumM WT¢,u¢, ,(V(Ci) U V(Ci1));
(iv) EndWhile
(c) EndDo
3. ProduceM WT¢, (S) by combiningM WT¢,uc, ,(V(C;)) UV (C;_p)) foralli €
[2, k].
The correctness and the time complexity of algorithma- MWT | are shown as
follows.

THEOREM 1. An MW T, (S) can be found in Of*) time, whereS is a set ofn
points in general position.

Proof. We applyA — MWT ¢, to S, which correctly computes ald W T¢; (S)
sinceA — T correctly computes aMWTc,-uci,Mﬂ}(V(Ci) U V(C;_1)). Con-
sider the time complexity. Step 1 can be don&itn logn) time by Fact 1. Step
2 executegk (= O(n)) times, where Step (a) take¥(n) time in the entire Step 2.
By Fact 2, antM W T¢,uc, (R;—1.;) can be found in at mos® ((n;_1 + n;)*) time for
i =2,...,k. Thus, Step (b) take® (n;_1 +n;)®* N(p.)) time. Since the process
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ends at finding al WT (R,_1.1), then the total computation in Step 2 is at most

k k
DCOUNPY | (i +n)%) < 0@ Y | N(ph) 1< 0.
i=2 i=2

Step 3 take®) (n) time. O

4. Computing an MWT of a sparse set

We now show that whefi is a ‘sparse point set’, theW WT¢; (S) isanMWT (S).
We shall first give a fact and some definitions.

FACT 3. Let P be a simple polygon with n vertices, and [B{P) and T'(P)
be any two triangulations of the interior @f, respectively. Then, the number of
interior edges off’ (P) is equal to that off’(P), which isn — 3.

Proof. By Euler’s formula ofe = v + f — 2 and by the fact that the interior of a
simple polygon is triangulated, we have exact 3 triangles in any triangulation
of P. Note that each of the boundary edges corresponds to a triangle and each
interior edge is shared by exactly two triangles. Then we haves interior edges
for any triangulation of a simple polygon withvertices. O

DEFINITION 1. Thediameter of a point setS, denoted byD(S), is the maximum
Euclidean distance among the pairs of pointsSin

DEFINITION 2. Theminimum set distanceof two point sets; and S,, denoted
by d(S1, S>), is the minimum Euclidean distance between the pointg ahd the
points ofsS,.

DEFINITION 3. LetCL(S) = (Cy, ..., Cy) be the convex layers of a point set
S. S is calledsparseif it satisfies the following two conditions:

() d(V(Ci), V(Ciy1)) = D(V(Ciyq)), foralli =1,---k -1, and
(ii) if edge p' p’,, of C; crossespq for p,q € S, q € C;, andl < i, then
d(p,q) > maXd(q, p;),d(q, pj+1)}.

THEOREM 2. If S is a sparse point set, thefL(S) € MWT(S).

Proof. Let CL(S) = (Cq, ..., Cy). Clearly, the convex hull of, Cy, is in
MWT(S). We shall first prove thaf, is in M WT (S) by contradiction. That is, if
the edge set af, contains a subsédi which does not belong t WT (S), then we
can construct a new triangulatidih(S) which contains all the edges 6% and has a
weight less thaw (M WT (S)). After proving thatC, belongs taM W T (S), we can
remove all the vertices af; from S since none of them will affect the minimum
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Figure 3. An illustration of three types of edges and an example of induced polygons.

weight triangulation of the remaining vertices R{C,). Thus, we can recursively
apply the same proof method §g{V (C1)} until the proof is completed.

For clarity, we use superscriptto denote the vertices of théh convex layer
and use a subscript to denote the ordering of these vertices in that lager.lat
E = {p?p3, p5p3, ..., p?p?,,} be the edge set not belongingMW T (S), where
the vertices(p?, p3, ... , pZ,,} are reindexed in clockwise order arou@d since
some edges of, may not belong taE. Let E be the set of edges iMWT(S),
each of which crosses an elementkfThere are three possible types of edges in
E as shown in Figure 3(a). We delefiefrom the edge set aif WT (S) and obtain
agraphMWT (S)/E. There are two cases w.r.t. this graph: £ajloes not contain
any type-3 edge and (l) contains some type-3 edges. We shall discuss these two
cases separately.

In case (a), lett; denote the subset df crossingp?p? ;. Note that all the
endpoints ofE; ending atC; together withp? and pi2+1 form a convex polygon
P;;+1, and all these endpoints & inside R(C,) together withp? and p? , form
apolygonp/, . Thatis,P; ;11U P/, , is the polygon triangulated by the edges of
E;. Clearly, any two such polygon®; ;,1U P/, andp; ;. UP; ;. fori # jand
i, je[1, r] are disjoint since these edgesih (crossingp?p?, ;) and those ink;

(crossingpjz.pJZ.H) must belong to the samd W T (S). In particular, we re-index the

vertices ofP, ;11 as(p?, piy. plos -+ Pii» PA1s PP)- IN general, these polygons
willbe P1p = (p2, ply, plo-- . Py, 03 P2 Pz = (p2 pie. PEo - v PR,
P3. P2+ Proryr = (P2, pli plo oo+, bl PPiq. PP). Clearly, they are con-

vex polygons lying outsid€’, and insideC;. Refer to Figure 3(b), wherg; ;. ; =

2 171 1 1 2 2 / (2 2 2 3 37 4
(p;, Di1> Pi2> Piz» Dia» Piy1s Pi ), and P,-,i+1 = (p}, Diy1s Pit2> Pij+1> Pij> Piko
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r

(€Y (b)
Figure 4. Two disjoint polygons.

p?). Also refer to Figure 4, wher&;; 4 U PligandPyjiyjpn UPL 0, are
disjoint.

Now, we re-triangulate the interior af; ;. U Pl{ i1
{PZP?1. PP} o PEPLss -+ PPPiv E'}, Where E” is the subset of; that tri-
angulatesP;; . This is always doable sin(‘_e,,-ﬂ is a convex polygon and since
E” has no special restriction. By Fact [3E; |=| E; | since the two edge sets
respectively are the internal edge sets of two different triangulations for the same
polygon. There is a one-to-one correspondence between the edgesod the

edges ofF;. Now, first match each edge pfp&j for 2 < j < k; with an edge oF;
ending agui%j. If only p&l exists, then do only the subsequent matching. Match then

by an edge sek; =

p,?p,.%rl andE” with the remaining edges if; in an arbitrary manner. By Condition
(i), each edge irp?pij for 2 < j < k; is shorter than the corresponding edge in

E;, and by Condition (i), each edge Ef' U {pizpi2+1} (which cannot be longer than
the diameter oRR(C»)) is also shorter than the corresponding edgeg;ifwhich is
longer than the diameter &(C>)). Thus, the new triangulation fa?, ;1 U P/, ,
with interior edge sef; has less weight than the old triangulation with internal
edge setk;. Consequently, we obtain a triangulatidiis) with weight less than
w(MWT(S)), a contradiction.

In case (b), a type-3 edge must cross two polygons in theRargaor example,
in Figure 5 type-3 edg;a})lp}ﬂg2 crosses bott®,; ; 1 and P, ;1. However, such
a type-3 edge cannot exist in amyW T (S). To see this, note that a type-3 edge or
a group of neighboring type-3 edges induce a convex polygdawnT (S). Two of
the vertices of this convex polygon must not belondtg say p* and p’, and the
remaining vertices must belong @. By condition (i), these remaining vertices
must lie outside the circles with radiys p’ and with centerp® or p’. Then, by
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p|%4 < C2 C2
GEP ~ P
o} ' A
; c, x .
P2 >— r
) - \_‘ 1
I o /‘\ p|+j,2
| e -
R ’p2 C,
Cli'\ Rin R Pisjise !
pl

Figure 5.The lightly shaded quadrilateral is shared bg; ;41 U PI,’I,Jrl and
Piyjivjy1 Y Pl.’+j i+ j41 The heavily shaded triangle does not belong to any one of
them. '

[21], p* p' must belong to any/ W T (S), hence such type-3 edges cannot exist. We
conclude thatE belongs toMWT (S), thusC, belongs toMWT (S). Obviously,
C, separates the vertices@h from those inR(C,) inthe MWT of S.

By removing all the vertices of’; from S, we have an original problem with
one less convex layer. The above argument can be appli€ed.t§/V (Cy)) =
(Cy, ..., C) and results inC3 € MWT (S). We then remove all the vertices of
C, from S and obtain an original problem with two less convex layers. This proof
continues untilC L(S/(V(Cy) U...UV(Ci_1))) = Cr. Then,C, € MW T (S) must
hold. O

Generally speaking WT¢,(S) is notanM WT (S). Figure 1 illustrates a point
setS suchthatM WT (S) # MWTc.(S). But from Theorem 1 and Theorem 2, we
have that

THEOREM 3. If S is a sparse point set, thed WT.,(S) = MWT(S) and the
MWT(S) can be computed i (n#) times.

5. Concluding remarks

In this paper, we presented a(n*) algorithm for computing alM WT (S) of
sparse point sef with n elements. We may regard point $awvith constraints and
MWT of § with some predetermined edges as being a natural extension of the
generalMWT of S. For example, forcing the boundary of a simple polygdmo

be inanyM WT (V (P)) is a well-known constraint [13]. Convex-layers constraint
seems to be a reasonable extension in this direction. It is quite interesting to find
other constraints foM WT. Another example is restricting point sgtto be onk
convex layers [1] or to be ok non-intersecting straight line segmentsGi (S)

[15]. A sparse point set is also such an example.
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v
- C& FﬂLiﬂ+1 F%Liﬂ+1

1
P+ 1

p+1j,2
p+1j,3
I:i>i+1 Pos F|y|+1 Vg . Pj+1 1
B C2 i p+j,4
4
1
Figure 6.

Furthermore, by the analysis of computing®w T (S) of a sparse point set,
we can derive a sufficient condition for new subgrapha/o¥v T .

Sufficient condition

LetCL(S) = (Cq, Co, ..., Cy) be the convex layers of a point setConvex layers
C; for1 < i < k belongs to amlM WT (S) if the following conditions are satisfied:

() d(V(Cs), V(Cs11)) =2 D(V(Csq)), foralls =1,.--i —1,and
(ii) if pypsy1crossedpgq for pspii1 e Cs, p,ge S,andp e Cjforl < j <s <
i —1,thend(p, q) > maxd(p, ps), d(p, ps+1)}-

The new subgraph (if it exists) is totally different from the known subgraphs
givenin [5, 7, 9, 12, 18, 21]. Figure 6(a) gives an example showing that our new
subgraph is different from all the known subgraphs of [9, 12, 19, 21], where
can be found by our method bpf; does not belong to the subgraphs identified by
any other method mentioned above. Clearllfes inside the empty disk associated
with pg in Keil's g-skeleton and: also lies inside the empty double-circle in the
condition of [21].p¢g is not the shortest edge among the seven points, thus, it cannot
be found according to [9]pqg is not a stable edge in [19]. Figure 6(b) shows that
Pq cannot be inT,(S) of [7] sincexy belongs to a local optimal triangulation as
shown.

It is interesting to see some experimental result based on our result.
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