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Abstract. Investigating the minimum weight triangulation of a point set with constraint is an impor-
tant approach for seeking the ultimate solution of the minimum weight triangulation problem. In this
paper, we consider the minimum weight triangulation of asparse point set, and present anO(n4)

algorithm to compute a triangulation of such a set. The property of sparse point set can be converted
into a new sufficient condition for finding subgraphs of the minimum weight triangulation. A special
point set is exhibited to show that our new subgraph of minimum weight triangulation cannot be
found by any currently known methods.
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1. Introduction

Let S = {pi | i = 0, . . . , n− 1} be a set ofn points in the plane, where each point
pi has the coordinates (x(pi), y(pi)). For simplicity, we assume thatS is in general
position so that no three points inS are co-linear. Letpipj for i 6= j denote the
line segment with endpointspi andpj , and letω(pipj ) denote the weight ofpipj ,
that is the Euclidean distance betweenpi andpj .

A triangulation of a planar point setS, denoted byT (S), is a maximum set of
line segments with endpoints inS in which no two line segments share any interior
point of them, thusT (S) partitions the interior of the convex hull ofS into empty
triangles. The weight of a triangulationT (S) is given by

ω(T (S)) =
∑

pipj εT (S)

ω(pipj ).

A minimum weight triangulation, simplyMWT , of S is defined as

MWT (S) = min{ω(T (S)) | for all possibleT (S)}.
∗This work was completed while the second author visited the Department of Computer

Science, Memorial University of Newfoundland.
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Computing anMWT (S) is an outstanding open problem whose complexity
status is unknown [10, 17]. A great deal of work has been done to seek the ultimate
solution of the problem. Basically, there are two directions from which to attack the
problem. The first one is to identify the edges inclusive or exclusive toMWT (S)

[5, 7, 12, 21]. It is obvious that the intersection of all triangulations of S is a subset
ofMWT (S). Recently, Dickerson and Montague [7] observed that the intersection
of all local optimal triangulations ofS is a subgraph ofMWT (S). A triangulation
T (S) is calledk-gon local optimal, denoted byTk(S), if any k-gon attracted from
T (S) is optimally triangulated by the edges ofT (S). If the MWT (S) is unique,
then the following inclusion property holds:⋂

T (S) ⊆
⋂
T4(S) ⊆ · · · ⊆

⋂
Tn−1(S) ⊆ MWT (S).

However, it seems difficult to find the intersection ask increases, and so far only
a subgraph ofT4(S) has been found by [7]. Gilbert [9] showed that the shortest
edge inS is in MWT (S). Yang et al. [21] showed that mutual nearest neighbors
in S are also inMWT (S). Keil [12] showed that the so-calledβ-skeleton ofS
for β = √2 is a subgraph ofMWT (S). Cheng and Xu [5] extended Keil’s result
to β = 1.17682. It seems that the identification of more edges inMWT (S) is a
promising approach. This is because the more the edges ofMWT (S) are identified,
the less disjoint connected components inMWT (S) will be. It is possible that
eventually all these identified edges form a connected graph so that anMWT (S)

can be constructed by a dynamic programming method in polynomial time. More-
over, even if such a connected graph is impossible to obtain, a larger subgraph will
lead to a better performance by some heuristics [20].

The other direction is to construct exactMWT (S) with some constraint on
S. Gilbert [9] and Klinesek [13] investigated the case whereS is restricted to a
simple polygon. AnO(n3) time dynamic programming algorithm was proposed
to obtain anMWT (S). Anagnostou and Corneil [1] studied the situation whereS

is restricted tok nested convex polygons. They gave anO(n3k+1) time algorithm
to find anMWT (S). Meijer and Rappaport [15] later improved the time bound to
O(nk) whenS is restricted tok non-intersecting line segments inside the convex
hull of S. Cheng et al. [6] and Xu [18] showed that if a subgraph ofMWT (S) with
k connected components is known, then the completeMWT (S) can be computed
in O(nk+2) time. In addition to the potential applications of constraint cases, it
is hoped that the research on constraint cases would reveal some insight to the
solution for the general case.

In this paper, we investigate the situation thatS forms a sparse set, which infor-
mally speaking, has a property that the distance between two consecutive convex
layers of the set is longer than the diameter of the inner layer. We present anO(n4)

time algorithm for computing anMWT (S) for a sparse setS. Amazingly, unlike
the most known constrainedMWT algorithms which depend on the number of
disjoint connected components, the time complexity of our algorithm is indepen-
dent on the number of convex layersk. Furthermore, we can convert the property
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of sparse set to a new sufficient condition for finding subgraphs of anMWT (S).
By demonstrating some special point set, we show that our new subgraphs cannot
be found by any currently known methods [5, 7, 9, 12, 18].

The paper is organized as follows. In Section 2, we discuss some properties of
a point set restricted to its convex layers. In Section 3, we present an algorithm
that produces anMWT (S) with convex layers constraint. In Section 4, we define
a sparse point setS and propose anO(n4) algorithm to compute anMWT (S). In
Section 5, we make some concluding remarks. In particular, we describe a suffi-
cient condition for some edges to be inMWT (S) and also demonstrate a point set
whose new subgraph ofMWT cannot be found by any known method.

2. Notations and lemmas

The convex layers of a setS of points in the plane, denoted byCL(S), is the set of
nested convex polygons obtained by repeatedly computing the convex hull of the
remaining set after removing the vertices of the current convex hull. Computing
the convex layers of a planar point set was discussed in many papers [3, 16]. An
optimal2(n logn) time algorithm was given by Chazelle [3].

FACT 1. (3). Convex layersCL(S) for | S |= n can be found inO(n logn) time
andO(n) space.

Let CL(S) = (C1, C2, . . . , Ck) be the convex layers ofS, whereCi for i =
1, . . . , k is theith layer ofS. LetV (Ci) be the vertex set ofCi and let| V (Ci) |=
ni. LetR(Ci) be the interior region bounded byCi and letRi,i+1 denote the region
betweenR(Ci) andR(Ci+1).

LEMMA 1. LetCL(S) = (C1, . . . , Ck) and letTCL(S) be any triangulation with
CL(S) constraint. For each vertexp ofCi, there exists a vertexq ofCi−1 such that
edgepq belongs toTCL(S).

Proof.Sincep is a vertex ofCi for 1< i 6 k, p is an interior point ofR(Ci−1).
Since the inner angle at the shared endpointp of any two consecutive edges ofCi
is less thanπ , there must exist an edgeeεTCL(S) lying onRi−1,i ande = pq for
qεV (Ci−1). 2

Let MWTCL(S) denote the minimum weight triangulation ofS with convex
layers constraint. Figure 1 shows anMWT (S) and anMWTCL(S) for a given
point setS.

3. The algorithm for computing anMWTCL(S)

Let TCL(S) be any triangulation ofS with CL(S) ∈ TCL(S), and letω(TCL(S))
be its weight. A minimum weight triangulation with convex layers constraint,
MWTCL(S), is one which minimizesω(TCL(S)) among all possibleTCL(S). It
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Figure 1. The left-hand side isMWTCL(S) and the right-hand side isMWT (S).
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Figure 2. For the definition ofpi∗.

is obvious that to find anMWTCL(S) is easier than to find anMWT (S). This is
because the convex layersCL(S) are already known to be a subset ofMWTCL(S),
a polynomial time algorithm for computing anMWTCL(S) is possible.

FACT 2. (9,14,18).If L is a set of non-intersecting edges with endpoints inS such
thatG(S,L) is a planar connected graph, then anMWT of S with L constraint,
denoted byMWTL(S), can be found inO(n3) time for | S |= n.

Xu [18] analyzed the optimal cell triangulation algorithm given by Heath and
Pemmarajiu [11] and obtained anO(n3) algorithm for computing anMWTL(S),
whereL is a subset of non-intersecting edges with endpoints inS andG(S,L) is a
planar connected graph. We denote this algorithm asA − TL .

SinceMWTCL(S) only minimizes the total weight of edges between convex
layers, we first consider how to triangulate regionR1,2 so that the total weight of
edges inR1,2 is a minimum. Letp2∗ be the vertex inC2 with the maximumy-
coordinate (for convenience, we can assume that no two points inS have the same
y-coordinate), and letN(p2∗) be the subset of vertices ofC1 whosey-coordinates
are greater than that ofp2∗, i.e.,y(q) > y(p2∗) for q ∈ N(p2∗). Figure 2 shows the
definition ofp2∗ andN(p2∗), whereN(p2∗) = (p1

1, p
1
2, p

1
3, p

1
4). By Lemma 1, there
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exists at least one vertexp1∗ ∈ N(p2∗) such that edgep2∗p1∗ is in anMWTCL(S).
In order to identify such an edge, we have to check all possible edges ending at
p2∗ andN(p2∗) and their corresponding constraintMWT s. Vertexp2∗ can be easily
found in at mostO(n2) time by scanning they-coordinates of the vertices ofC2,
N(p2∗) can be computed in at mostO(n1) time by scanning these vertices ofC1

with y-coordinates greater thany(p2∗). For each vertexqεN(p2∗), add edgeqp2∗ to
form a graphG(V (C1) ∪ V (C2), C1 ∪ C2 ∪ {qp2∗}). Clearly, the graphG is planar
and connected. By Fact 2, anMWT (V (C1)∪ V (C2)) with L(= C1 ∪C2 ∪ {qp2∗})
constraint can be found inO((n1 + n2)

3) time by algorithmA − TL . Then, an
MWT (V (C1) ∪ V (C2)) with C1 ∪ C2 constraint can be found in at mostO(|
N(p2∗) | (n1+ n2)

3) time.
In the following, we describe an algorithm, denoted byA−MWTCL, to produce

anMWT of S with convex layers constraint.
Let CL(S) = (C1, . . . , Ck), and letpi∗ denote the vertex ofCi with maximal

y-coordinate. Let N(pi∗) denote those vertices ofCi−1 whosey-coordinates are
greater than that ofpi∗.

ALGORITHM A−MWTCL
Input:S (a set ofn points in general position).
Output:MWTCL(S)

1. Find the convex layersCL(S) = (C1, . . . , Ck).
2. For i = 2 tok Do

(a) Findpi∗ andN(pi∗).
(b) WhileN(pi∗) 6= ∅ Do

(i) q ← attract(N(pi∗));
(ii) Compute anMWT

Ci∪Ci−1∪{pi∗q}(V (Ci) ∪ V (Ci−1)) by A − TL ;

(iii) Update the minimumMWTCi∪Ci−1(V (Ci) ∪ V (Ci−1));
(iv) EndWhile

(c) EndDo
3. ProduceMWTCL(S) by combiningMWTCi∪Ci−1(V (Ci)∪V (Ci−1)) for all i ∈
[2, k].

The correctness and the time complexity of algorithmA −MWT CL are shown as
follows.

THEOREM 1. AnMWTCL(S) can be found in O(n4) time, whereS is a set ofn
points in general position.

Proof.We applyA −MWT CL to S, which correctly computes anMWTCL(S)
sinceA − TL correctly computes anMWT

Ci∪Ci−1∪{pi∗q}(V (Ci) ∪ V (Ci−1)). Con-
sider the time complexity. Step 1 can be done inO(n logn) time by Fact 1. Step
2 executesk(= O(n)) times, where Step (a) takesO(n) time in the entire Step 2.
By Fact 2, anMWTC1∪C2(Ri−1,i) can be found in at mostO((ni−1+ ni)3) time for
i = 2, . . . , k. Thus, Step (b) takesO(ni−1+ ni)3 ∗N(pi∗)) time. Since the process
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ends at finding anMWT (Rk−1,k), then the total computation in Step 2 is at most

k∑
i=2

O(| N(pi∗) | (ni−1+ ni)3) 6 O(n3)

k∑
i=2

| N(pi∗) |6 O(n4).

Step 3 takesO(n) time. 2

4. Computing an MWT of a sparse set

We now show that whenS is a ‘sparse point set’, thenMWTCL(S) is anMWT (S).
We shall first give a fact and some definitions.

FACT 3. Let P be a simple polygon with n vertices, and letT (P ) and T ′(P )
be any two triangulations of the interior ofP , respectively. Then, the number of
interior edges ofT (P ) is equal to that ofT ′(P ), which isn− 3.

Proof.By Euler’s formula ofe = v+ f −2 and by the fact that the interior of a
simple polygon is triangulated, we have exactn − 3 triangles in any triangulation
of P . Note that each of then boundary edges corresponds to a triangle and each
interior edge is shared by exactly two triangles. Then we haven− 3 interior edges
for any triangulation of a simple polygon withn vertices. 2
DEFINITION 1. Thediameter of a point setS, denoted byD(S), is the maximum
Euclidean distance among the pairs of points inS.

DEFINITION 2. Theminimum set distanceof two point setsS1 andS2, denoted
by d(S1, S2), is the minimum Euclidean distance between the points ofS1 and the
points ofS2.

DEFINITION 3. LetCL(S) = (C1, . . . , Ck) be the convex layers of a point set
S. S is calledsparseif it satisfies the following two conditions:

(i) d(V (Ci), V (Ci+1)) > D(V (Ci+1)), for all i = 1, · · · k − 1, and
(ii) if edgepijp

i
j+1 of Ci crossespq for p, q ∈ S, q ∈ Cl, and l < i, then

d(p, q) > max{d(q, pj ), d(q, pj+1)}.

THEOREM 2. If S is a sparse point set, thenCL(S) ⊆ MWT (S).
Proof. Let CL(S) = (C1, . . . , Ck). Clearly, the convex hull ofS, C1, is in

MWT (S). We shall first prove thatC2 is inMWT (S) by contradiction. That is, if
the edge set ofC2 contains a subsetE which does not belong toMWT (S), then we
can construct a new triangulationT (S)which contains all the edges ofC2 and has a
weight less thanω(MWT (S)). After proving thatC2 belongs toMWT (S), we can
remove all the vertices ofC1 from S since none of them will affect the minimum
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Figure 3. An illustration of three types of edges and an example of induced polygons.

weight triangulation of the remaining vertices inR(C2). Thus, we can recursively
apply the same proof method toS/{V (C1)} until the proof is completed.

For clarity, we use superscripti to denote the vertices of theith convex layer
and use a subscript to denote the ordering of these vertices in that layer. InC2, let
E = {p2

1p
2
2, p

2
2p

2
3, . . . , p

2
r p

2
r+1} be the edge set not belonging toMWT (S), where

the vertices(p2
1, p

2
2, . . . , p

2
r+1} are reindexed in clockwise order aroundC2 since

some edges ofC2 may not belong toE. Let Ē be the set of edges inMWT (S),
each of which crosses an element ofE. There are three possible types of edges in
Ē as shown in Figure 3(a). We deletēE from the edge set ofMWT (S) and obtain
a graphMWT (S)/Ē. There are two cases w.r.t. this graph: (a)Ē does not contain
any type-3 edge and (b)̄E contains some type-3 edges. We shall discuss these two
cases separately.

In case (a), letĒi denote the subset of̄E crossingp2
i p

2
i+1. Note that all the

endpoints ofĒi ending atC1 together withp2
i andp2

i+1 form a convex polygon
Pi,i+1, and all these endpoints of̄Ei insideR(C2) together withp2

i andp2
i+1 form

a polygonP ′i,i+1. That is,Pi,i+1∪P ′i,i+1 is the polygon triangulated by the edges of
Ēi . Clearly, any two such polygons:Pi,i+1∪P ′i,i+1 andPj,j+1∪P ′j,j+1 for i 6= j and

i, jε[1, r] are disjoint since these edges in̄Ei (crossingp2
i p

2
i+1) and those inĒj

(crossingp2
jp

2
j+1) must belong to the sameMWT (S). In particular, we re-index the

vertices ofPi,i+1 as(p2
i , p

1
i,1, p

1
i,2, . . . , p

1
i,ki
, p2

i+1, p
2
i ). In general, these polygons

will be P1,2 = (p2
1, p

1
1,1, p

1
1,2 · · · , p1

1,k1
, p2

2, p
2
1); P2,3 = (p2

2, p
1
2,1, p

1
2,2 · · · , p1

2,k2
,

p2
3, p

2
2); · · · ; Pr,r+1 = (p2

r , p
1
r,1, p

1
r,2, · · · , p1

r,kr
, p2

r+1, p
2
r ). Clearly, they are con-

vex polygons lying outsideC2 and insideC1. Refer to Figure 3(b), wherePi,i+1 =
(p2

i , p
1
i,1, p

1
i,2, p

1
i,3, p

1
i,4, p

2
i+1, p

2
i ), andP ′i,i+1 = (p2

i , p
2
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2
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3
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3
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4
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Figure 4. Two disjoint polygons.

p2
i ). Also refer to Figure 4, wherePi,i+1 ∪ P ′i,i+1 andPi+j,i+j+1 ∪ P ′i+j,i+j+1 are

disjoint.
Now, we re-triangulate the interior ofPi,i+1 ∪ P ′i,i+1 by an edge setEi =

{p2
i p

2
i+1, p

2
i p

1
i,2, p

2
i p

1
i,3, . . . , p

2
i p

1
i,ki
, E′′}, whereE′′ is the subset ofEi that tri-

angulatesP ′i,i+1. This is always doable sincePi,i+1 is a convex polygon and since
E′′ has no special restriction. By Fact 3,| Ēi |=| Ei | since the two edge sets
respectively are the internal edge sets of two different triangulations for the same
polygon. There is a one-to-one correspondence between the edges ofĒi and the
edges ofEi . Now, first match each edge ofp2

i p
1
i,j for 26 j 6 ki with an edge ofĒi

ending atp1
i,j . If only p1

i,1 exists, then do only the subsequent matching. Match then

p2
i p

2
i+1 andE′′ with the remaining edges in̄Ei in an arbitrary manner. By Condition

(ii), each edge inp2
i p

1
i,j for 2 6 j 6 ki is shorter than the corresponding edge in

Ēi , and by Condition (i), each edge inE′′ ∪ {p2
i p

2
i+1} (which cannot be longer than

the diameter ofR(C2)) is also shorter than the corresponding edge inĒi (which is
longer than the diameter ofR(C2)). Thus, the new triangulation forPi,i+1 ∪ P ′i,i+1
with interior edge setEi has less weight than the old triangulation with internal
edge setĒi. Consequently, we obtain a triangulationT (S) with weight less than
ω(MWT (S)), a contradiction.

In case (b), a type-3 edge must cross two polygons in the areaR1,2. For example,

in Figure 5 type-3 edgep1
i,1p

1
i+j,2 crosses bothPi,i+1 andPi+j,i+j+1. However, such

a type-3 edge cannot exist in anyMWT (S). To see this, note that a type-3 edge or
a group of neighboring type-3 edges induce a convex polygon inMWT (S). Two of
the vertices of this convex polygon must not belong toC1, sayps andpt , and the
remaining vertices must belong toC1. By condition (i), these remaining vertices
must lie outside the circles with radiuspspt and with centerps or pt . Then, by
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[21], pspt must belong to anyMWT (S), hence such type-3 edges cannot exist. We
conclude thatE belongs toMWT (S), thusC2 belongs toMWT (S). Obviously,
C2 separates the vertices inC1 from those inR(C2) in theMWT of S.

By removing all the vertices ofC1 from S, we have an original problem with
one less convex layer. The above argument can be applied toCL(S/V (C1)) =
(C2, . . . , Ck) and results inC3 ∈ MWT (S). We then remove all the vertices of
C2 from S and obtain an original problem with two less convex layers. This proof
continues untilCL(S/(V (C1)∪ ...∪V (Ck−1))) = Ck. Then,Ck ∈ MWT (S)must
hold. 2

Generally speaking,MWTCL(S) is not anMWT (S). Figure 1 illustrates a point
setS such thatMWT (S) 6= MWTCL(S). But from Theorem 1 and Theorem 2, we
have that

THEOREM 3. If S is a sparse point set, thenMWTCL(S) = MWT (S) and the
MWT (S) can be computed inO(n4) times.

5. Concluding remarks

In this paper, we presented anO(n4) algorithm for computing anMWT (S) of
sparse point setS with n elements. We may regard point setS with constraints and
MWT of S with some predetermined edges as being a natural extension of the
generalMWT of S. For example, forcing the boundary of a simple polygonP to
be in anyMWT (V (P )) is a well-known constraint [13]. Convex-layers constraint
seems to be a reasonable extension in this direction. It is quite interesting to find
other constraints forMWT . Another example is restricting point setS to be onk
convex layers [1] or to be onk non-intersecting straight line segments inCH(S)
[15]. A sparse point set is also such an example.
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Furthermore, by the analysis of computing anMWT (S) of a sparse point setS,
we can derive a sufficient condition for new subgraphs ofMWT .

Sufficient condition

LetCL(S) = (C1, C2, . . . , Ck) be the convex layers of a point setS. Convex layers
Ci for 1< i 6 k belongs to anMWT (S) if the following conditions are satisfied:

(i) d(V (Cs), V (Cs+1)) > D(V (Cs+1)), for all s = 1, · · · i − 1, and
(ii) if psps+1 crossespq for psps+1 ∈ Cs, p, q ∈ S, andp ∈ Cj for 16 j < s 6

i − 1, thend(p, q) > max{d(p, ps), d(p, ps+1)}.

The new subgraph (if it exists) is totally different from the known subgraphs
given in [5, 7, 9, 12, 18, 21]. Figure 6(a) gives an example showing that our new
subgraph is different from all the known subgraphs of [9, 12, 19, 21], wherepq

can be found by our method butpq does not belong to the subgraphs identified by
any other method mentioned above. Clearly,x lies inside the empty disk associated
with pq in Keil’s β-skeleton andx also lies inside the empty double-circle in the
condition of [21].pq is not the shortest edge among the seven points, thus, it cannot
be found according to [9].pq is not a stable edge in [19]. Figure 6(b) shows that
pq cannot be inT4(S) of [7] sincexy belongs to a local optimal triangulation as
shown.

It is interesting to see some experimental result based on our result.
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