Computing a Minimum Weight Triangulation of a Sparse Point Set*

CAO AN WANG ${ }^{1}$ and YIN-FENG XU ${ }^{2}$
${ }^{1}$ Department of Computer Science, Memorial University of Newfoundland, St John's, NFLD, Canada A1B 3X5; ${ }^{2}$ The School of Management, Xi'an Jiaotong University, Xi'an, People's Republic of China

(Received 25 June 1996; accepted in revised form 8 September 1998)

Abstract

Investigating the minimum weight triangulation of a point set with constraint is an important approach for seeking the ultimate solution of the minimum weight triangulation problem. In this paper, we consider the minimum weight triangulation of a sparse point set, and present an $O\left(n^{4}\right)$ algorithm to compute a triangulation of such a set. The property of sparse point set can be converted into a new sufficient condition for finding subgraphs of the minimum weight triangulation. A special point set is exhibited to show that our new subgraph of minimum weight triangulation cannot be found by any currently known methods.

Key words: Algorithm, Computational geometry, Minimum weight triangulation

1. Introduction

Let $S=\left\{p_{i} \mid i=0, \ldots, n-1\right\}$ be a set of n points in the plane, where each point p_{i} has the coordinates $\left(x\left(p_{i}\right), y\left(p_{i}\right)\right)$. For simplicity, we assume that S is in general position so that no three points in S are co-linear. Let $\overline{p_{i} p_{j}}$ for $i \neq j$ denote the line segment with endpoints p_{i} and p_{j}, and let $\omega\left(p_{i} p_{j}\right)$ denote the weight of $\overline{p_{i} p_{j}}$, that is the Euclidean distance between p_{i} and p_{j}.

A triangulation of a planar point set S, denoted by $T(S)$, is a maximum set of line segments with endpoints in S in which no two line segments share any interior point of them, thus $T(S)$ partitions the interior of the convex hull of S into empty triangles. The weight of a triangulation $T(S)$ is given by

$$
\omega(T(S))=\sum_{\frac{p_{i} p_{j} \epsilon T(S)}{}} \omega\left(p_{i} p_{j}\right) .
$$

A minimum weight triangulation, simply $M W T$, of S is defined as

$$
M W T(S)=\min \{\omega(T(S)) \mid \text { for all possible } T(S)\} .
$$

[^0]Computing an $M W T(S)$ is an outstanding open problem whose complexity status is unknown [10, 17]. A great deal of work has been done to seek the ultimate solution of the problem. Basically, there are two directions from which to attack the problem. The first one is to identify the edges inclusive or exclusive to $M W T$ (S) $[5,7,12,21]$. It is obvious that the intersection of all triangulations of S is a subset of $M W T(S)$. Recently, Dickerson and Montague [7] observed that the intersection of all local optimal triangulations of S is a subgraph of $M W T(S)$. A triangulation $T(S)$ is called k-gon local optimal, denoted by $T_{k}(S)$, if any k-gon attracted from $T(S)$ is optimally triangulated by the edges of $T(S)$. If the $M W T(S)$ is unique, then the following inclusion property holds:

$$
\bigcap T(S) \subseteq \bigcap T_{4}(S) \subseteq \cdots \subseteq \bigcap T_{n-1}(S) \subseteq M W T(S)
$$

However, it seems difficult to find the intersection as k increases, and so far only a subgraph of $T_{4}(S)$ has been found by [7]. Gilbert [9] showed that the shortest edge in S is in $M W T(S)$. Yang et al. [21] showed that mutual nearest neighbors in S are also in $M W T(S)$. Keil [12] showed that the so-called β-skeleton of S for $\beta=\sqrt{2}$ is a subgraph of $M W T(S)$. Cheng and Xu [5] extended Keil's result to $\beta=1.17682$. It seems that the identification of more edges in $M W T(S)$ is a promising approach. This is because the more the edges of $M W T(S)$ are identified, the less disjoint connected components in $M W T(S)$ will be. It is possible that eventually all these identified edges form a connected graph so that an $M W T(S)$ can be constructed by a dynamic programming method in polynomial time. Moreover, even if such a connected graph is impossible to obtain, a larger subgraph will lead to a better performance by some heuristics [20].

The other direction is to construct exact $M W T(S)$ with some constraint on S. Gilbert [9] and Klinesek [13] investigated the case where S is restricted to a simple polygon. An $O\left(n^{3}\right)$ time dynamic programming algorithm was proposed to obtain an $M W T(S)$. Anagnostou and Corneil [1] studied the situation where S is restricted to k nested convex polygons. They gave an $O\left(n^{3 k+1}\right)$ time algorithm to find an $M W T(S)$. Meijer and Rappaport [15] later improved the time bound to $O\left(n^{k}\right)$ when S is restricted to k non-intersecting line segments inside the convex hull of S. Cheng et al. [6] and Xu [18] showed that if a subgraph of $M W T(S)$ with k connected components is known, then the complete $M W T(S)$ can be computed in $O\left(n^{k+2}\right)$ time. In addition to the potential applications of constraint cases, it is hoped that the research on constraint cases would reveal some insight to the solution for the general case.

In this paper, we investigate the situation that S forms a sparse set, which informally speaking, has a property that the distance between two consecutive convex layers of the set is longer than the diameter of the inner layer. We present an $O\left(n^{4}\right)$ time algorithm for computing an $M W T(S)$ for a sparse set S. Amazingly, unlike the most known constrained $M W T$ algorithms which depend on the number of disjoint connected components, the time complexity of our algorithm is independent on the number of convex layers k. Furthermore, we can convert the property
of sparse set to a new sufficient condition for finding subgraphs of an $M W T(S)$. By demonstrating some special point set, we show that our new subgraphs cannot be found by any currently known methods $[5,7,9,12,18]$.

The paper is organized as follows. In Section 2, we discuss some properties of a point set restricted to its convex layers. In Section 3, we present an algorithm that produces an $M W T(S)$ with convex layers constraint. In Section 4, we define a sparse point set S and propose an $O\left(n^{4}\right)$ algorithm to compute an $M W T(S)$. In Section 5, we make some concluding remarks. In particular, we describe a sufficient condition for some edges to be in $M W T(S)$ and also demonstrate a point set whose new subgraph of $M W T$ cannot be found by any known method.

2. Notations and lemmas

The convex layers of a set S of points in the plane, denoted by $C L(S)$, is the set of nested convex polygons obtained by repeatedly computing the convex hull of the remaining set after removing the vertices of the current convex hull. Computing the convex layers of a planar point set was discussed in many papers [3, 16]. An optimal $\Theta(n \log n)$ time algorithm was given by Chazelle [3].

FACT 1. (3). Convex layers $C L(S)$ for $|S|=n$ can be found in $O(n \log n)$ time and $O(n)$ space.

Let $C L(S)=\left(C_{1}, C_{2}, \ldots, C_{k}\right)$ be the convex layers of S, where C_{i} for $i=$ $1, \ldots, k$ is the i th layer of S. Let $V\left(C_{i}\right)$ be the vertex set of C_{i} and let $\left|V\left(C_{i}\right)\right|=$ n_{i}. Let $R\left(C_{i}\right)$ be the interior region bounded by C_{i} and let $R_{i, i+1}$ denote the region between $R\left(C_{i}\right)$ and $R\left(C_{i+1}\right)$.

LEMMA 1. Let $C L(S)=\left(C_{1}, \ldots, C_{k}\right)$ and let $T_{C L}(S)$ be any triangulation with $C L(S)$ constraint. For each vertex p of C_{i}, there exists a vertex q of C_{i-1} such that edge $\overline{p q}$ belongs to $T_{C L}(S)$.

Proof. Since p is a vertex of C_{i} for $1<i \leqslant k, p$ is an interior point of $R\left(C_{i-1}\right)$. Since the inner angle at the shared endpoint p of any two consecutive edges of C_{i} is less than π, there must exist an edge $e \epsilon T_{C L}(S)$ lying on $R_{i-1, i}$ and $e=\overline{p q}$ for $q \in V\left(C_{i-1}\right)$.

Let $M W T_{C L}(S)$ denote the minimum weight triangulation of S with convex layers constraint. Figure 1 shows an $M W T(S)$ and an $M W T_{C L}(S)$ for a given point set S.

3. The algorithm for computing an $M W T_{C L}(S)$

Let $T_{C L}(S)$ be any triangulation of S with $C L(S) \in T_{C L}(S)$, and let $\omega\left(T_{C L}(S)\right)$ be its weight. A minimum weight triangulation with convex layers constraint, $M W T_{C L}(S)$, is one which minimizes $\omega\left(T_{C L}(S)\right)$ among all possible $T_{C L}(S)$. It

Figure 1. The left-hand side is $M W T_{C L}(S)$ and the right-hand side is $M W T(S)$.

Figure 2. For the definition of p_{*}^{i}.
is obvious that to find an $M W T_{C L}(S)$ is easier than to find an $M W T(S)$. This is because the convex layers $C L(S)$ are already known to be a subset of $M W T_{C L}(S)$, a polynomial time algorithm for computing an $M W T_{C L}(S)$ is possible.

FACT 2. $(9,14,18)$. If L is a set of non-intersecting edges with endpoints in S such that $G(S, L)$ is a planar connected graph, then an MWT of S with L constraint, denoted by $M W T_{L}(S)$, can be found in $O\left(n^{3}\right)$ time for $|S|=n$.

Xu [18] analyzed the optimal cell triangulation algorithm given by Heath and Pemmarajiu [11] and obtained an $O\left(n^{3}\right)$ algorithm for computing an $M W T_{L}(S)$, where L is a subset of non-intersecting edges with endpoints in S and $G(S, L)$ is a planar connected graph. We denote this algorithm as $\mathbf{A}-\mathbf{T}_{\mathbf{L}}$.

Since $M W T_{C L}(S)$ only minimizes the total weight of edges between convex layers, we first consider how to triangulate region $R_{1,2}$ so that the total weight of edges in $R_{1,2}$ is a minimum. Let p_{*}^{2} be the vertex in C_{2} with the maximum y coordinate (for convenience, we can assume that no two points in S have the same y-coordinate), and let $N\left(p_{*}^{2}\right)$ be the subset of vertices of C_{1} whose y-coordinates are greater than that of p_{*}^{2}, i.e., $y(q)>y\left(p_{*}^{2}\right)$ for $q \in N\left(p_{*}^{2}\right)$. Figure 2 shows the definition of p_{*}^{2} and $N\left(p_{*}^{2}\right)$, where $N\left(p_{*}^{2}\right)=\left(p_{1}^{1}, p_{2}^{1}, p_{3}^{1}, p_{4}^{1}\right)$. By Lemma 1 , there
exists at least one vertex $p_{*}^{1} \in N\left(p_{*}^{2}\right)$ such that edge $\overline{p_{*}^{2} p_{*}^{1}}$ is in an $M W T_{C L}(S)$. In order to identify such an edge, we have to check all possible edges ending at p_{*}^{2} and $N\left(p_{*}^{2}\right)$ and their corresponding constraint $M W T$ s. Vertex p_{*}^{2} can be easily found in at most $O\left(n_{2}\right)$ time by scanning the y-coordinates of the vertices of C_{2}, $N\left(p_{*}^{2}\right)$ can be computed in at most $O\left(n_{1}\right)$ time by scanning these vertices of C_{1} with y-coordinates greater than $y\left(p_{*}^{2}\right)$. For each vertex $q \in N\left(p_{*}^{2}\right)$, add edge $\overline{q p_{*}^{2}}$ to form a graph $G\left(V\left(C_{1}\right) \cup V\left(C_{2}\right), C_{1} \cup C_{2} \cup\left\{\overline{q p_{*}^{2}}\right\}\right)$. Clearly, the graph G is planar and connected. By Fact 2, an $M W T\left(V\left(C_{1}\right) \cup V\left(C_{2}\right)\right)$ with $L\left(=C_{1} \cup C_{2} \cup\left\{\overline{q p_{*}^{2}}\right\}\right)$ constraint can be found in $O\left(\left(n_{1}+n_{2}\right)^{3}\right)$ time by algorithm $\mathbf{A}-\mathbf{T}_{\mathbf{L}}$. Then, an $M W T\left(V\left(C_{1}\right) \cup V\left(C_{2}\right)\right)$ with $C_{1} \cup C_{2}$ constraint can be found in at most $O(\mid$ $\left.N\left(p_{*}^{2}\right) \mid\left(n_{1}+n_{2}\right)^{3}\right)$ time.

In the following, we describe an algorithm, denoted by $A-M W T_{C L}$, to produce an $M W T$ of S with convex layers constraint.

Let $C L(S)=\left(C_{1}, \ldots, C_{k}\right)$, and let p_{*}^{i} denote the vertex of C_{i} with maximal y-coordinate. Let $\mathrm{N}\left(p_{*}^{i}\right)$ denote those vertices of C_{i-1} whose y-coordinates are greater than that of p_{*}^{i}.

ALGORITHM $\boldsymbol{A} \boldsymbol{-} \boldsymbol{M} \boldsymbol{W} \boldsymbol{T}_{\boldsymbol{C} L}$

Input: S (a set of n points in general position).
Output: $M W T_{C L}(S)$

1. Find the convex layers $C L(S)=\left(C_{1}, \ldots, C_{k}\right)$.
2. For $i=2$ to $k D o$
(a) Find p_{*}^{i} and $N\left(p_{*}^{i}\right)$.
(b) While $N\left(p_{*}^{i}\right) \neq \emptyset$ Do
(i) $q \leftarrow \operatorname{attract}\left(N\left(p_{*}^{i}\right)\right)$;
(ii) Compute an $M W T_{C_{i} \cup C_{i-1} \cup\left\{\overline{p_{* q\}}^{i}}\right.}\left(V\left(C_{i}\right) \cup V\left(C_{i-1}\right)\right)$ by $\mathbf{A}-\mathbf{T}_{\mathbf{L}}$;
(iii) Update the minimum $M W T_{C_{i} \cup C_{i-1}}\left(V\left(C_{i}\right) \cup V\left(C_{i-1}\right)\right)$;
(iv) EndWhile
(c) EndDo
3. Produce $M W T_{C L}(S)$ by combining $M W T_{C_{i} \cup C_{i-1}}\left(V\left(C_{i}\right) \cup V\left(C_{i-1}\right)\right)$ for all $i \in$ $[2, k]$.
The correctness and the time complexity of algorithm $\mathbf{A}-\mathbf{M W T}_{\mathbf{C L}}$ are shown as follows.

THEOREM 1. An $M W T_{C L}(S)$ can be found in $O\left(n^{4}\right)$ time, where S is a set of n points in general position.

Proof. We apply $\mathbf{A}-\mathbf{M W T}_{\mathbf{C L}}$ to S, which correctly computes an $M W T_{C L}(S)$ since $\mathbf{A}-\mathbf{T}_{\mathbf{L}}$ correctly computes an $M W T_{C_{i} \cup C_{i-1} \cup\left\{p_{*}^{i} q\right\}}\left(V\left(C_{i}\right) \cup V\left(C_{i-1}\right)\right)$. Consider the time complexity. Step 1 can be done in $O(n \log n)$ time by Fact 1. Step 2 executes $k(=O(n))$ times, where Step (a) takes $O(n)$ time in the entire Step 2. By Fact 2, an $M W T_{C_{1} \cup C_{2}}\left(R_{i-1, i}\right)$ can be found in at most $O\left(\left(n_{i-1}+n_{i}\right)^{3}\right)$ time for $i=2, \ldots, k$. Thus, Step (b) takes $\left.O\left(n_{i-1}+n_{i}\right)^{3} * N\left(p_{*}^{i}\right)\right)$ time. Since the process
ends at finding an $M W T\left(R_{k-1, k}\right)$, then the total computation in Step 2 is at most

$$
\sum_{i=2}^{k} O\left(\left|N\left(p_{*}^{i}\right)\right|\left(n_{i-1}+n_{i}\right)^{3}\right) \leqslant O\left(n^{3}\right) \sum_{i=2}^{k}\left|N\left(p_{*}^{i}\right)\right| \leqslant O\left(n^{4}\right)
$$

Step 3 takes $O(n)$ time.

4. Computing an MWT of a sparse set

We now show that when S is a 'sparse point set', then $M W T_{C L}(S)$ is an $M W T(S)$. We shall first give a fact and some definitions.

FACT 3. Let P be a simple polygon with n vertices, and let $T(P)$ and $T^{\prime}(P)$ be any two triangulations of the interior of P, respectively. Then, the number of interior edges of $T(P)$ is equal to that of $T^{\prime}(P)$, which is $n-3$.

Proof. By Euler's formula of $e=v+f-2$ and by the fact that the interior of a simple polygon is triangulated, we have exact $n-3$ triangles in any triangulation of P. Note that each of the n boundary edges corresponds to a triangle and each interior edge is shared by exactly two triangles. Then we have $n-3$ interior edges for any triangulation of a simple polygon with n vertices.

DEFINITION 1. The diameter of a point set S, denoted by $D(S)$, is the maximum Euclidean distance among the pairs of points in S.

DEFINITION 2. The minimum set distance of two point sets S_{1} and S_{2}, denoted by $d\left(S_{1}, S_{2}\right)$, is the minimum Euclidean distance between the points of S_{1} and the points of S_{2}.

DEFINITION 3. Let $C L(S)=\left(C_{1}, \ldots, C_{k}\right)$ be the convex layers of a point set $S . S$ is called sparse if it satisfies the following two conditions:
(i) $d\left(V\left(C_{i}\right), V\left(C_{i+1}\right)\right) \geqslant D\left(V\left(C_{i+1}\right)\right)$, for all $i=1, \cdots k-1$, and
(ii) if edge $\overline{p_{j}^{i} p_{j+1}^{i}}$ of C_{i} crosses $\overline{p q}$ for $p, q \in S, q \in C_{l}$, and $l<i$, then $d(p, q)>\max \left\{d\left(q, p_{j}\right), d\left(q, p_{j+1}\right)\right\}$.

THEOREM 2. If S is a sparse point set, then $C L(S) \subseteq M W T(S)$.
Proof. Let $C L(S)=\left(C_{1}, \ldots, C_{k}\right)$. Clearly, the convex hull of S, C_{1}, is in $M W T(S)$. We shall first prove that C_{2} is in $M W T(S)$ by contradiction. That is, if the edge set of C_{2} contains a subset E which does not belong to $M W T(S)$, then we can construct a new triangulation $T(S)$ which contains all the edges of C_{2} and has a weight less than $\omega(M W T(S))$. After proving that C_{2} belongs to $M W T(S)$, we can remove all the vertices of C_{1} from S since none of them will affect the minimum

Figure 3. An illustration of three types of edges and an example of induced polygons.
weight triangulation of the remaining vertices in $R\left(C_{2}\right)$. Thus, we can recursively apply the same proof method to $S /\left\{V\left(C_{1}\right)\right\}$ until the proof is completed.

For clarity, we use superscript i to denote the vertices of the i th convex layer and use a subscript to denote the ordering of these vertices in that layer. In C_{2}, let $E=\left\{\overline{p_{1}^{2} p_{2}^{2}}, \overline{p_{2}^{2} p_{3}^{2}}, \ldots, \overline{p_{r}^{2} p_{r+1}^{2}}\right\}$ be the edge set not belonging to $M W T(S)$, where the vertices $\left(p_{1}^{2}, p_{2}^{2}, \ldots, p_{r+1}^{2}\right\}$ are reindexed in clockwise order around C_{2} since some edges of C_{2} may not belong to E. Let \bar{E} be the set of edges in $M W T(S)$, each of which crosses an element of E. There are three possible types of edges in \bar{E} as shown in Figure 3(a). We delete \bar{E} from the edge set of $M W T(S)$ and obtain a graph $M W T(S) / \bar{E}$. There are two cases w.r.t. this graph: (a) \bar{E} does not contain any type- 3 edge and (b) \bar{E} contains some type- 3 edges. We shall discuss these two cases separately.

In case (a), let \bar{E}_{i} denote the subset of \bar{E} crossing $\overline{p_{i}^{2} p_{i+1}^{2}}$. Note that all the endpoints of \bar{E}_{i} ending at C_{1} together with p_{i}^{2} and p_{i+1}^{2} form a convex polygon $P_{i, i+1}$, and all these endpoints of \bar{E}_{i} inside $R\left(C_{2}\right)$ together with p_{i}^{2} and p_{i+1}^{2} form a polygon $P_{i, i+1}^{\prime}$. That is, $P_{i, i+1} \cup P_{i, i+1}^{\prime}$ is the polygon triangulated by the edges of \bar{E}_{i}. Clearly, any two such polygons: $P_{i, i+1} \cup P_{i, i+1}^{\prime}$ and $P_{j, j+1} \cup P_{j, j+1}^{\prime}$ for $i \neq j$ and $i, j \in[1, r]$ are disjoint since these edges in \bar{E}_{i} (crossing $\overline{p_{i}^{2} p_{i+1}^{2}}$) and those in \bar{E}_{j} (crossing $\overline{p_{j}^{2} p_{j+1}^{2}}$) must belong to the same $M W T(S)$. In particular, we re-index the vertices of $P_{i, i+1}$ as $\left(p_{i}^{2}, p_{i, 1}^{1}, p_{i, 2}^{1}, \ldots, p_{i, k_{i}}^{1}, p_{i+1}^{2}, p_{i}^{2}\right)$. In general, these polygons will be $P_{1,2}=\left(p_{1}^{2}, p_{1,1}^{1}, p_{1,2}^{1} \cdots, p_{1, k_{1}}^{1}, p_{2}^{2}, p_{1}^{2}\right) ; P_{2,3}=\left(p_{2}^{2}, p_{2,1}^{1}, p_{2,2}^{1} \cdots, p_{2, k_{2}}^{1}\right.$, $\left.p_{3}^{2}, p_{2}^{2}\right) ; \cdots ; P_{r, r+1}=\left(p_{r}^{2}, p_{r, 1}^{1}, p_{r, 2}^{1}, \cdots, p_{r, k_{r}}^{1}, p_{r+1}^{2}, p_{r}^{2}\right)$. Clearly, they are convex polygons lying outside C_{2} and inside C_{1}. Refer to Figure 3(b), where $P_{i, i+1}=$ $\left(p_{i}^{2}, p_{i, 1}^{1}, p_{i, 2}^{1}, p_{i, 3}^{1}, p_{i, 4}^{1}, p_{i+1}^{2}, p_{i}^{2}\right)$, and $P_{i, i+1}^{\prime}=\left(p_{i}^{2}, p_{i+1}^{2}, p_{i+2}^{2}, p_{i, j+1}^{3}, p_{i, j}^{3}, p_{i, k}^{4}\right.$,

Figure 4. Two disjoint polygons.
$\left.p_{i}^{2}\right)$. Also refer to Figure 4 , where $P_{i, i+1} \cup P_{i, i+1}^{\prime}$ and $P_{i+j, i+j+1} \cup P_{i+j, i+j+1}^{\prime}$ are disjoint.

Now, we re-triangulate the interior of $P_{i, i+1} \cup P_{i, i+1}^{\prime}$ by an edge set $E_{i}=$ $\left\{\overline{p_{i}^{2} p_{i+1}^{2}}, \overline{p_{i}^{2} p_{i, 2}^{1}}, \overline{p_{i}^{2} p_{i, 3}^{1}}, \ldots, \overline{p_{i}^{2} p_{i, k_{i}}^{1}}, E^{\prime \prime}\right\}$, where $E^{\prime \prime}$ is the subset of E_{i} that triangulates $P_{i, i+1}^{\prime}$. This is always doable since $P_{i, i+1}$ is a convex polygon and since $E^{\prime \prime}$ has no special restriction. By Fact $3,\left|\bar{E}_{i}\right|=\left|E_{i}\right|$ since the two edge sets respectively are the internal edge sets of two different triangulations for the same polygon. There is a one-to-one correspondence between the edges of \bar{E}_{i} and the edges of E_{i}. Now, first match each edge of $\overline{p_{i}^{2} p_{i, j}^{1}}$ for $2 \leqslant j \leqslant k_{i}$ with an edge of \bar{E}_{i} ending at $p_{i, j}^{1}$. If only $p_{i, 1}^{1}$ exists, then do only the subsequent matching. Match then $\overline{p_{i}^{2} p_{i+1}^{2}}$ and $E^{\prime \prime}$ with the remaining edges in \bar{E}_{i} in an arbitrary manner. By Condition (ii), each edge in $\overline{p_{i}^{2} p_{i, j}^{1}}$ for $2 \leqslant j \leqslant k_{i}$ is shorter than the corresponding edge in \bar{E}_{i}, and by Condition (i), each edge in $E^{\prime \prime} \cup\left\{\overline{p_{i}^{2} p_{i+1}^{2}}\right\}$ (which cannot be longer than the diameter of $R\left(C_{2}\right)$) is also shorter than the corresponding edge in \bar{E}_{i} (which is longer than the diameter of $R\left(C_{2}\right)$). Thus, the new triangulation for $P_{i, i+1} \cup P_{i, i+1}^{\prime}$ with interior edge set E_{i} has less weight than the old triangulation with internal edge set \bar{E}_{i}. Consequently, we obtain a triangulation $T(S)$ with weight less than $\omega(M W T(S))$, a contradiction.

In case (b), a type- 3 edge must cross two polygons in the area $R_{1,2}$. For example, in Figure 5 type- 3 edge $\overline{p_{i, 1}^{1} p_{i+j, 2}^{1}}$ crosses both $P_{i, i+1}$ and $P_{i+j, i+j+1}$. However, such a type-3 edge cannot exist in any $M W T(S)$. To see this, note that a type-3 edge or a group of neighboring type-3 edges induce a convex polygon in $M W T(S)$. Two of the vertices of this convex polygon must not belong to C_{1}, say p^{s} and p^{t}, and the remaining vertices must belong to C_{1}. By condition (i), these remaining vertices must lie outside the circles with radius $\overline{p^{s} p^{t}}$ and with center p^{s} or p^{t}. Then, by

Figure 5. The lightly shaded quadrilateral is shared by $P_{i, i+1} \cup P_{i, i+1}^{\prime}$ and $P_{i+j, i+j+1} \cup P_{i+j, i+j+1}^{\prime}$. The heavily shaded triangle does not belong to any one of them.
[21], $\overline{p^{s} p^{t}}$ must belong to any $M W T(S)$, hence such type- 3 edges cannot exist. We conclude that E belongs to $M W T(S)$, thus C_{2} belongs to $M W T(S)$. Obviously, C_{2} separates the vertices in C_{1} from those in $R\left(C_{2}\right)$ in the $M W T$ of S.

By removing all the vertices of C_{1} from S, we have an original problem with one less convex layer. The above argument can be applied to $C L\left(S / V\left(C_{1}\right)\right)=$ $\left(C_{2}, \ldots, C_{k}\right)$ and results in $C_{3} \in M W T(S)$. We then remove all the vertices of C_{2} from S and obtain an original problem with two less convex layers. This proof continues until $C L\left(S /\left(V\left(C_{1}\right) \cup \ldots \cup V\left(C_{k-1}\right)\right)\right)=C_{k}$. Then, $C_{k} \in M W T(S)$ must hold.

Generally speaking, $M W T_{C L}(S)$ is not an $M W T(S)$. Figure 1 illustrates a point set S such that $M W T(S) \neq M W T_{C L}(S)$. But from Theorem 1 and Theorem 2, we have that

THEOREM 3. If S is a sparse point set, then $M W T_{C L}(S)=M W T(S)$ and the $M W T(S)$ can be computed in $O\left(n^{4}\right)$ times.

5. Concluding remarks

In this paper, we presented an $O\left(n^{4}\right)$ algorithm for computing an $M W T(S)$ of sparse point set S with n elements. We may regard point set S with constraints and $M W T$ of S with some predetermined edges as being a natural extension of the general $M W T$ of S. For example, forcing the boundary of a simple polygon P to be in any $M W T(V(P))$ is a well-known constraint [13]. Convex-layers constraint seems to be a reasonable extension in this direction. It is quite interesting to find other constraints for $M W T$. Another example is restricting point set S to be on k convex layers [1] or to be on k non-intersecting straight line segments in $\mathrm{CH}(\mathrm{S})$ [15]. A sparse point set is also such an example.

Figure 6.

Furthermore, by the analysis of computing an $M W T(S)$ of a sparse point set S, we can derive a sufficient condition for new subgraphs of $M W T$.

Sufficient condition

Let $C L(S)=\left(C_{1}, C_{2}, \ldots, C_{k}\right)$ be the convex layers of a point set S. Convex layers C_{i} for $1<i \leqslant k$ belongs to an $M W T(S)$ if the following conditions are satisfied:
(i) $d\left(V\left(C_{s}\right), V\left(C_{s+1}\right)\right) \geqslant D\left(V\left(C_{s+1}\right)\right)$, for all $s=1, \cdots i-1$, and
(ii) if $\overline{p_{s} p_{s+1}}$ crosses $\overline{p q}$ for $\overline{p_{s} p_{s+1}} \in C_{s}, p, q \in S$, and $p \in C_{j}$ for $1 \leqslant j<s \leqslant$ $i-1$, then $d(p, q)>\max \left\{d\left(p, p_{s}\right), d\left(p, p_{s+1}\right)\right\}$.

The new subgraph (if it exists) is totally different from the known subgraphs given in $[5,7,9,12,18,21]$. Figure 6(a) gives an example showing that our new subgraph is different from all the known subgraphs of [9, 12, 19, 21], where $\overline{p q}$ can be found by our method but $\overline{p q}$ does not belong to the subgraphs identified by any other method mentioned above. Clearly, x lies inside the empty disk associated with $\overline{p q}$ in Keil's β-skeleton and x also lies inside the empty double-circle in the condition of [21]. $\overline{p q}$ is not the shortest edge among the seven points, thus, it cannot be found according to [9]. $\overline{p q}$ is not a stable edge in [19]. Figure 6(b) shows that $\overline{p q}$ cannot be in $T_{4}(S)$ of [7] since $\overline{x y}$ belongs to a local optimal triangulation as shown.

It is interesting to see some experimental result based on our result.

Acknowledgments

The authors would like to thank the anonymous reviewers for their valuable comments. This work is supported by NSERC grant OPG0041629 and NSF of China grant 19731001.

References

1. Anagnostou, E. and Corneil, D. (1993), Polynomial time instances of the minimum weight triangulation problem, Computational Geometry: Theory and Applications, 3: 247-259.
2. Aichholzer, O., Aurenhammer, F., Rote, G. and Tachwer, M. (1995), Triangulations intersect nicely, Proc. 11th Ann. Symp. on Computational Geometry, Vancouver, B.C., Association for Computing Machinery, 220-229.
3. Chazelle, B. (1985), On the convex layers of a planar set, IEEE Transactions of Information Theory, 4: 17-31.
4. Cheng, S.-W. and Xu, Y.-F. (1995), Constrained independence system and triangulations of planar point sets, in D.-Z. Du and Ming Li (eds.), Computing and Combinatorics, Proc. First Ann. Int. Conf., COCOON'95, LNCS 959, Springer-Verlag, pp. 41-50.
5. Cheng, S.-W. and Xu, Y.-F. (1996), Approaching the largest β-skeleton within the minimum weight triangulation, Proc. 12th Ann. Symp. Computational Geometry, Philadelphia, Association for Computing Machinery.
6. Cheng, S.-W., Golin, M. and Tsang, J. (1995), Expected case analysis of b-skeletons with applications to the construction of minimum weight triangulations, CCCG Conference Proceedings, P.Q., Canada, 279-284.
7. Dickerson, M.T. and Montague, M.H. (1996), The exact minimum weight triangulation, Proc. 12th Ann. Symp. Computational Geometry, Philadelphia, Association for Computing Machinery.
8. Edelsbrunner, H. (1987), Algorithms in Combinatorial Geometry, Springer-Verlag.
9. Gilbert, P.D. (1979), New results in planar triangulations, TR-850, University of Illinois Coordinated Science Lab.
10. Garey, M. and Johnson, D. (1979), Computer and Intractability. A guide to the theory of NPcompleteness, Freeman.
11. Heath, L. and Pemmarajiu, S. (1992), New results for the minimum weight triangulation problem, Virginia Polytechnic Institute and State University, Dept. of Computer Science, TR 92-30.
12. Keil, J.M. (1994), Computing a subgraph of the minimum weight triangulation, Computational Geometry: Theory and Applications 4: 13-26.
13. Klinesek, G. (1980). Minimal triangulations of polygonal domains, Ann. Discrete Math., 9: 121-123.
14. Lingas, A. (1987), A new heuristic for the minimum weight triangulation, SIAM Journal of Algebraic and Discrete Methods, 8: 4-658.
15. Meijer, H. and Rappaport, D. (1992), Computing the minimum weight triangulation of a set of linearly ordered points, Information Processing Letters, 42: 35-38.
16. Shamos, M.I. (1978), Computational geometry, Ph.D. dissertation, Yale Univ., New Haven, CT.
17. Shamos, M.I. and Hoey, D. (1975), Closest point problems, Proc. 16th IEEE Symp. Foundations of Computer Science, 151-162.
18. Xu, Y.-F. (1992), Minimum weight triangulation problem of a planar points set, Ph.D. Thesis, Institute of Applied Mathematics, Academia Sinica, Beijing.
19. $\mathrm{Xu}, \mathrm{Y} .-\mathrm{F} .(1996)$, On stable line segments in all triangulations, JCU-Applied Math. to appear.
20. Xu, Y.-F. and Zhou, D. (1995), Improved heuristics for the minimum weight triangulation, Acta Mathematica Applicatae Sinica, 11(4): 359-368.
21. Yang, B.-T., Xu, Y.-F. and You, Z.-Y. (1994), A chain decomposition algorithm for the proof of a property on minimum weight triangulations, Proc. 5th International Symposium on Algorithms and Computation (ISAAC'94), LNCS 834, Springer-Verlag, pp. 423-427.

[^0]: *This work was completed while the second author visited the Department of Computer Science, Memorial University of Newfoundland.

